AFRL-IF-RS-TR-2000-72
Final Technical Report
June 2000

SUPPORT OF INTELLIGENT INTEGRATION OF
INFORMATION USING AN ASYNCHRONOUS
TRIGGER PROCESSOR

University of Florida
Sponsored by

Defense Advanced Research Projects Agency
DARPA Order No. F244 & F709

APPROVED FOR PUBLIC RELEASE,; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

20000705 012

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

DTIC QUALITY INSPECTED 4

o

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-72 has been reviewed and is approved for publication.

APPROVED: %MJ/ aé e

RAYMOND A. LIUZZI
Project Engineer

FOR THE DIRECTOR: W” Sl &

NORTHRUP FOWLER, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.

This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

SUPPORT OF INTELLIGENT INTEGRATION OF INFORMATION USING AN
ASYNCHRONOUS TRIGGER PROCESSOR
Eric N. Hanson

Contractor: University of Florida

Contract Number: F30602-97-1-0344

Effective Date of Contract: 17 September 1997

Contract Expiration Date: 17 September 1999 .

Short Title of Work: Support of Intelligent Integration of
Information Using An Asynchronous
Trigger Processor

Period of Work Covered: Sep 97 — Sep 99

Principal Investigator: Eric N. Hanson
Phone: (352) 392-2691

AFRL Project Engineer: Raymond A. Liuzzi
Phone: (315) 330-3577

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Raymond A. Liuzzi, AFRL/IFTD, 525 Brooks Road, Rome, NY.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suita 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave biank] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED]

JUNE 2000 Final Sep 97 - Sep 99
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
SUPPORT OF INTELLIGENT INTEGRATION OF INFORMATION USING AN | C - F30602-97-1-0344
ASYNCHRONOUS TRIGGER PROCESSOR PE - 62301E

PR - IIST

6. AUTHOR(S) TA - 00
Eric N. Hanson WU - 17
1. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Florida REPORT NUMBER
CISE Department N/A
Gainsville FL 32611
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Air Force Research Laboratory/IFTD AGENCY REPORT NUMBER
525 Brooks Road
Rome NY 13441-4505 AFRL-IF-RS-TR-2000-72
11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Raymond A. Liuzzi/IFTD/(315) 330-3577
12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 words)

This effort has resulted in the development of an architecture for and prototype implementation of a new type of database
rule system: the scalable, asynchronous trigger processor. A scalable, asynchronous trigger processor enhances existing
database management systems and other information sources with the ability to trigger actions when new information meets
criteria specified in rule conditions. Rule actions can update the database, call database procedures, or send alerts to people
or running application programs. The prototype developed as part of this project, called TriggerMan, has demonstrated the
capability to process tens of thousands of rules efficiently, and has the potential to scale to millions. The techniques
implemented in TriggerMan to achieve scalability include a novel rule indexing technique and multi-threaded parallelism on
shared-memory multiprocessor. Investigations include easy-to-use techniques for processing temporal triggers (triggers withja
conditions based on how data changes over time); efficient methods for inferring updates done to passive data sources that d
not support triggers; a query-decomposition based approach to testing join conditions in rules; and methods for testing triggdr
conditions efficiently when they contain expensive predicates.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Computers, Software, Database, Architecture 64
16. PRICE CODE

|17 SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
Standard Form 298 gRev. 2-89) (EG)
Prescribed by ANS! Std. 239.18

Designed using Perform Pro, WHS/DIOR, Oct 94

Table of Contents

Project Summary
Deliverables
Students Trained
Technology Transfer
Publications

Refereed Publications
Technical Reports
Theses

Follow-On Research

List of Attachments

Scalable Trigger Processing (Paper)
Scalable Triggering and Alerting (Slides)

N NN

14

Project Summary

This project has resulted in the development of an architecture for and prototype implementation of a
new type of database rule system: the scalable, asynchronous trigger processor. A scalable,
asynchronous trigger processor enhances existing database management systems and other
information sources with the ability to trigger actions when new information meets criteria specified in
rule conditions. Rule actions can update the database, call database procedures, or send alerts to
people or running application programs. The prototype developed as part of this project, called
TriggerMan, has demonstrated the capability to process tens of thousands of rules efficiently, and has
the potential to scale to millions. The techniques implemented in TriggerMan to achieve scalability
include a novel rule indexing technique and multi-threaded parallelism on a shared-memory
multiprocessor. We have also investigated the following: new, easy-to-use techniques for processing
temporal triggers (triggers with conditions based on how data changes over time); efficient methods for
inferring updates done to passive data sources that do not support triggers; a query-decomposition
based approach to testing join conditions in rules; and methods for testing trigger conditions efficiently
when they contain expensive predicates. Four Ph.D. students and three master's students did thesis
projects and graduated under this funded research effort. A fourth master's student will graduate in
spring 2000. An effort is underway to transfer the technology to the commercial sector.

Deliverables

Deliverables for the project include the code for TriggerMan, a compilation of papers and technical
reports produced under the project, and this final report. Source code and documentation for
TriggerMan is at the following URL:

hitp://www.dbcenter.cise.ufl.eduftriggerman/

Instructions appear there as well that discuss how to set up, compile, and use the software. Windows
NT 4.0, Informix Dynamic Server version 9.14 or later for Windows NT, Microsoft Visual C++ 6.0, and
Microsoft Visual Basic 6.0 are required to compile and run the software. They main body of the
TriggerMan server code consists of 26,000 lines of C.

Students Trained

The following students performed research and graduated under this project:

Mohktar Kandil, Ph.D, 1998.
Chris Carnes, Ph.D, 1999.
Nabeel Al-Fayoumi, Ph.D., 1998.
J.B. Park, Ph.D., 1999.

Mohan Konyala, MS, 1998.
Lioyd Noronha, MS, 1999.

Sasi Parthasarathy, MS, 1999.

The following student worked on the tail end of the project and is scheduled to graduate in May 2000:

Lan Huang

A University of Florida undergraduate, Albert Vernon, served as the lead programmer for the project.
He wrote more than half the code for TriggerMan, and coordinated the development work of other
students. He took a year off from school during 1997-1998 to do this. He will graduate with a BS in
computer science in 2000.

Technology Transfer

A private corporation, Velara Software, Inc., is negotiating with the University of Florida to license the
TriggerMan source code in order to create a commercial product based on it. Velara is a startup
founded in Gainesville, Florida in April 1999 by Eric Hanson, Albert Vernon, and Sasi Parthasarathy.

Publications
Refereed Publications

1. E.Hanson et al, “Scalable Trigger Processing,” Proceedings of the 1999 Data Engineering
Conference, Sydney, Australia, May 1999, pp. 266-275.

2. E.Hanson and L. Noronha, “Timer-Driven Database Triggers and Alerters: Semantics and a
Challenge,” SIGMOD Record, vol. 28, no. 4, December 1999 (refereed only by the editor).
Technical Reports

See http://www.cise.ufl.eduftech-reportstech-reports/ for University of Florida CISE Dept. tech. reports.

1. L. Noronha and E. Hanson, “Addendum to Enhanced Algorithms for Timer Trigger Processing,”
University of Florida CISE Dept. tech. report TR-99-016, September 1999, 4 pages.

2. L. Noronha and E. Hanson, “Enhanced Algorithms for Timer Trigger Processing,” University of
Florida CISE Dept. tech. report TR-99-015, September 1999, 81 pages.

3. E.Hanson, and L. Noronha, “Timer-Driven Database Triggers and Alerters,” University of Florida
CISE Dept. tech. report TR-99-011, August 1999, 13 pages.

4. C. Cames, and E. Hanson, “Query-Based Change Detection,” University of Florida CISE Dept.
tech. report TR-98-015, October 1998, 24 pages.

5. E.Hanson, M. Konyala, L. Noronha, and A Vernon, “Scalable Trigger Processing in TriggerMan,”
University of Florida CISE Dept. tech. report TR-98-008, July 1998, 25 pages.

8. E.Hanson, N. Al-Fayoumi, C. Carnes, M. Kandil, H. Liu, M. Lu, J.B. Park, and A. Vernon,
“TriggerMan: An Asynchronous Trigger Processor as an Extension to an Object-Relational
DBMS,” University of Florida CISE Dept. tech. report TR-97-024, December 1997, 21 pages.

7. E.Hanson and S. Khosla, “An Introduction to the TriggerMan Asynchronous Trigger Processor,”
University of Florida CISE Dept. tech. report TR-97-007, April 1997, 11 pages.

Theses

Mohktar Kandil, “Selection Predicate Placement in Database Discrimination Networks,” University of
Florida CISE Department, Ph.D. thesis, 1998.

Chris Carnes, “An Update Gathering Architecture for Data Warehouses and External Trigger
Processors,” University of Florida CISE Department, Ph.D. thesis, 1999.

Nabeel Al-Fayoumi, “Design and Implermentation of a Temporal Trigger Subsystem for the TriggerMan
Asynchronous Trigger Processor,” University of Florida CISE Department, Ph.D. thesis, 1998.

2

J.B. Park, “Parallel Token Processing in an Asynchronous Trigger System,” University of Florida CISE
Department, Ph.D. thesis, 1999.

Mohan Konyala, “lmplementation of a Selection Scalable Selection Predicate Index in the TriggerMan
Asynchronous Trigger Processor,” University of Florida CISE Department, MS thesis, 1998.

Lloyd Noronha, “Enhanced Techniques for Timer Trigger Processing,” University of Florida CISE
Department, MS thesis, 1999.

Sasi Parthasarathy, “A Decomposition-Based Approach to Join Trigger Processing in TriggerMan,”
University of Florida CISE Department, MS thesis, 1999.
hitp://etd.fcla.edu/etd/uf/1999/amp7404/parthasarathy.pdf

Lan Huang, “SMP Parallelism for Improved Throughput and Response Time in the TriggerMan

Asynchronous Trigger Processor,” University of Florida CISE Department, MS thesis, in preparation,
2000.

Follow-On Research

The TriggerMan project continues. We have received another grant from NSF to continue the work on
developing advanced scalable trigger processing techniques (NSF Grant I1S-98-20839, “Scalable
Trigger Processing”). This NSF grant covers the period from September 1999-September 2002.

List of Attachments

1. Slides from recent talk on TriggerMan, given at Oregon Graduate Institute, Portiand, Oregon,
January, 2000.

2. Copy of 1999 IEEE Data Engineering paper on TriggerMan.

Scalable Trigger Processing

Eric N. Hanson, Chris Carnes, Lan Huang, Mohan Konyala, I.loyd Noronha,
Sashi Parthasarathy, J. B. Park and Albert Vernon
301 CSE, CISE Department, University of Florida
Gainesville, FL 32611-6120
hanson@cise.ufl.edu, http://www.cise.ufl.edu/~hanson

Abstractf

Current database trigger systems have extremely
limited scalability. This paper proposes a way to develop
a truly scalable trigger system. Scalability to large
numbers of triggers is achieved with a trigger cache to
use main memory effectively, and a memory-conserving
selection predicate index based on the use of unique
expression formats called expression signatures. A key
observation is that if a very large number of triggers are
created, many will have the same structure, except for the
appearance of different constant values. When a trigger
is created, tuples are added to special relations created
Jor expression signatures to hold the trigger’s constants.
These tables can be augmented with a database index or
main-memory index structure to serve as a predicate
index. The design presented also uses a number of types
of concurrency to achieve scalability, including token
(tuple)-level, condition-level, rule action-level, and data-
level concurrency.

1. Introduction

Trigger features in commercial database products are
quite popular with application developers since they allow
integrity constraint checking, alerting, and ‘other
operations to be performed uniformly across all
applications. Unfortunately, effective use of triggers is
hampered by the fact that current trigger systems in
commercial database products do not scale. Numerous
database products only allow one trigger for each type of
update event (insert, delete and update) on each table.
More advanced commercial trigger systems have effective
limits of a few hundred triggers per table.

¥ This research was supported by the Defense Advanced
Research Projects Agency, NCR Teradata Corporation, and
Informix Corporation.

From Proc. 15" Intl. IEEE Data Eng. Conf., March 1999.

Application designers could effectively use large
numbers of triggers (thousands or even millions) in a
single database if it were feasible. The advent of the
Internet and the World Wide Web makes it even more
important that it be possible to support large numbers of
triggers. A web interface could allow users to
interactively create triggers over the Internet. This type of
architecture could lead to large numbers of triggers
created in a single database.

This paper presents strategies for developing a highly
scalable trigger system. The concepts introduced here are
being implemented in a system we are developing called
TriggerMan, which consists of an extension module for an
object-relational DBMS (a DataBlade for Informix with
Universal Data Option, hereafter simply called Informix
{Info99]), plus some additional programs to be described
later. The approach we propose for implementing a
scalable trigger system uses asynchronous trigger
processing and a sophisticated predicate index. This can
give good response time for updates, while still allowing
processing of large numbers of potentially expensive
triggers. The scalability concepts outlined in this paper
could also be used in a trigger system inside a DBMS
server.

A key concept that can be exploited to develop a
scalable trigger system is that if a large number of triggers
are created, it is almost certainly the case that many of
them have almost the same format. Many triggers may
have identical structure except that one constant has been
substituted for another, for example. Based on this
observation, a trigger system can identify unique
expression signatures, and group predicates taken from
trigger conditions into equivalence classes based on these
signatures.

The number of distinct expression signatures is fairly
small, small enough that main memory data structures can
be created for all of them. In what follows, we discuss the
TriggerMan command language and architecture, and then
turn to a discussion of how large numbers of triggers can
be handled effectively using expression signature

equivalence classes and a novel selection predicate
indexing technique.

2. The TriggerMan Command Language

Commands in TriggerMan have a keyword-delimited,
SQL-like syntax. TriggerMan supports the notion of a
connection to a local Informix database, a remote
database, or a generic data source program. A connection
description for a database contains information about the
host name where the database resides, the type of database
system running (e.g. Informix, Oracle, Sybase, DB2 etc.),
the name of the database server, a user ID, and a
password. A single connection is designated as the
default connection. There can be multiple data sources
defined for a single connection. Data sources normally
correspond to tables, but this is not essential.

Triggers can be defined using this command:

create trigger <triggerName> [in setName]
{optionalFlags)

from fromList

[on eventSpec]

[when condition)

[group by attributeList]

{having groupCondition]

do action

Triggers can be added to a specific trigger set.
Otherwise they belong to a default trigger set. The from,
on, and when clauses are normally present to specify the
trigger condition. Optionally, group by and having
clauses, similar to those available in SQL {Date93], can
be used to specify trigger conditions involving aggregates
or temporal functions. Multiple data sources can be
referenced in the from clause. This allows multiple-table
triggers to be defined.

An example of a rule, based on an emp table from a
database for which a connection has been defined, is
given below. This rule sets the salary of Fred to the salary
of Bob:

create trigger updateFred

from emp

on update(emp.salary)

when emp.name = Bob’

do execSQL ‘update emp set

salary=:NEW .emp.salary where emp.name=
"Fred”’

This rule illustrates the use of an execSQL TriggerMan
command that allows SQL statements to be run against a
database. The :NEW notation in the rule action (the do
clause) allows reference to new updated data values, the
new emp.salary value in this case. Similarly, :OLD allows
access to data values that were current just before an
update. Values matching the trigger condition are

substituted into the trigger action using macro
substitution. After substitution, the trigger action is
evaluated. This procedure binds the rule condition to the
rule action.

An example of a more sophisticated rule (one whose
condition involves joins) is as follows. Consider the
following schema for part of a real-estate database, which
would be imported by TriggerMan using define data
source commands:

house(hno,address,price,nno,spno)
salesperson(spno,name,phone)
represents(spno,nno)
neighborhood(nno,name,location)

A rule on this schema might be “if a new house is
added which is in a neighborhood that salesperson Iris
represents then notify her,” i.e.:

create trigger IrisHouseAlert

on insert to house

from salesperson s, house h, represents r

when s.name = ‘Iris’ and s.spno=r.spno and
r.nno=h.nno

do raise event
NewHouselnIrisNeighborhood(h.hno, h.address)

This command refers to three tables. The raise event
command used in the rule action is a special command
that allows rule actions to communicate with the outside
world [Hans98].

3. System Architecture

The TriggerMan architecture is made up of the
following components:
1. the TriggerMan DataBlade which lives inside of
Informix,
2. data sources, which normally correspond to local or
remote tables. Most commonly, a data source will be
a local table. In that case, standard Informix triggers
are created automatically by TriggerMan to capture
updates to the table. We use the one trigger per table
per update event available in Informix to capture
updates and transmit them to TriggerMan by inserting

Host DBMS: Informix with
Universal Data Option

’ TriggerMan
Driver

Update Queue t
Table

- TriggerMan DataBlade Tri Man k

Data Source [3| TriggerMan g

App |* ;:[[D Console |

U] pdae Quoue TriggerMan i
in Shared Memory - Clicnt App

Data Source ——t l I [¥ e

S . - Triggeran
i = T Client App

Figure 1. The architecture of the TriggerMén
trigger processor.

e oz

them in an update descriptor table. For remote data
sources, data source applications transmit update
descriptors to TriggerMan through the data source
API (defined below).

3. TriggerMan client applications, which create
triggers, drop triggers, register for events, receive
event notifications when triggers fire, etc.,

4. one or more instances of the TriggerMan driver
program, each of which periodically invokes a special
TmanTest() function in the TriggerMan DataBlade,
allowing trigger condition testing and action
execution to be performed,

5. the TriggerMan console, a special application
program that lets a user directly interact with the
system to create triggers, drop triggers, start the
system, shut it down, etc.

The general architecture of the TriggerMan system is
illustrated in Figure 1. Two libraries that come with
TriggerMan allow writing of client applications and data

_source programs. These libraries define the TriggerMan

client application programming interface (API) and the
TriggerMan data source API. The console program and
other application programs use client API functions to
connect to TriggerMan, issue commands, register for
events, and so forth. Data source programs can be written
using the data source API. Updates received from update
capture triggers or data source programs are consumed on
the next call to TmanTest(). '

As Figure 1 shows, data source programs or triggers
can place update descriptors in a table acting as a queue.
This works in the current implementation. We plan to
allow updates to be delivered into a main-memory queue
as well in the future. This will deliver updates faster, but
the safety of persistent update queuing will be lost.
Trigger processing in the current system is asynchronous.
If simple Informix triggers are used to capture updates,
TriggerMan could process triggers synchronously as well.
We plan to add this feature in a later implementation.

TriggerMan is based on an object-relational data
model. The current implementation supports char,
varchar, integer, and float data types. Support for user-
defined types is being added.

Trigger Condition Testing Algorithm

TriggerMan uses a discrimination network called an A-
TREAT network [Hans96] a variation of the TREAT
network [Mira97] for trigger condition testing. In the
future, we plan to implement an optimized type of
discrimination network called a Gator network in
TriggerMan [Hans97b).

This paper focuses primarily on efficient and scalable
selection condition testing and rule action execution. The
results are applicable to TREAT, Rete [Forg82] and Gator

networks when used for trigger condition testing. The
results could also be adapted to other trigger systems.

4. General Trigger Condition Structure

Trigger conditions have the following general
structure. The from clause refers to one or more data
sources. The on clause may contain an event condition

DataSource: emp

Event: insert
SyntaxTree:

emp.sal CONSTANT

Figure 2. Example expression signature syntax
tree.
for at most one of the data sources referred to in the from
list. The when clause of a trigger is a Boolean-valued
expression. For a combination of one or more tuples from
data sources in the from list, the when clause evaluates to
true or false.

A canonical representation of the when clause can be
formed in the following way:

1. Translate it to conjunctive normal form (CNF,
i.e. and-of-ors notation).

2. Each conjunct refers to zero, one, two, or
possibly more data sources. Group the conjuncts
by the set of data sources they refer to.

If a group of conjuncts refers to one data source, the
logical AND of these conjuncts is a selection predicate. If
it refers to two data sources, the AND of its conjuncts is a
join predicate. If it refers to zero conjuncts, it is a trivial
predicate. If it refers to three or more data sources, we
call it a hyper-join predicate.

These predicates may or may not contain constants.
The general premise of this paper is that very large
numbers of triggers will only be created if predicates in
different triggers contain distinct constant values. Below,
we will examine how to handle selection and join
predicates that contain constants, so that scalability to
large numbers of triggers can be achieved.

5. Scalable Predicate Indexing Using
Expression Signatures

In what follows, we treat the event (om) condition
separately from the when condition as a convenience.
However, event conditions and when clause conditions
are both logically selection conditions [Hans96) that can
be applied to update descriptors submitted to the system.

A tuple variable is a symbol, defined in the from
clause of a trigger, which corresponds to a usage of a
particular data source in that trigger. The general form of
a selection predicate is:

(C,; ORCy, OR...ORC,y YAND... AND(Cy, ORCy, OR...ORCy)
where all clauses C i appearing in the predicate refer to

the same tuple variable. Furthermore, each such clause is
an atomic expression that does not contain Boolean
operators, other than possibly the NOT operator. A single
clause may contain constants.

For convenience, we assume that every data source has
a data source ID. A data source corresponds to a single
table in a remote or local database, or even a single stream
of tuples sent in messages from an application program.
An expression signature for a general selection or join
predicate expression is a triple consisting of a data source
ID, an operation code (insert, delete, update, or
insertOrUpdate), and a generalized expression. If a tuple
variable appearing in the from clause of a trigger does not
have any event specified in the on clause, then the event is
implicitly insert or update for that tuple variable. The

format of the generalized expression is:
(C’,,ORC", OR...ORC’,y) AND..AND(C’; ORC’, OR...ORC’y,)

where clause C7;is the same as C;except that all

constants in Cij are substituted with placeholder symbols.

If the entire expression has M constants, they are
numbered 1 tom from left to right. If the constant

number X, 1< x <m, appears in the clause Cij in the

original expression, then it is substituted with placeholder

CONSTANTYy in C;; in the expression signature.

As a practical matter, most selection predicates will not
contain OR’s, and most will have only a single clause.
Consider this example trigger condition:

on insert to emp
when emp.salary > 80000

In an implementation, the generalized expression in an
expression signature can be a syntax tree with
placeholders at some leaf nodes representing the location
where a constant must appear. For example, the signature
of the trigger condition just given can be represented as
shown in

Figure 2. The condition:

on insert to emp
when emp.salary > 50000

has a different constant than the earlier condition, but it
has the same signature. In general, an expression signature
defines an equivalence class of all instantiations of that
expression with different constant values.

If an expression is in the equivalence class defined by
an expression signature, we say the expression matches
the expression signature.

Expression signatures represent the logical structure or
schema of a part of a trigger condition. We assert that in a
real application of a trigger system like TriggerMan, even
if very large numbers of triggers are defined, only a
relatively small number of unique expression signatures
will ever be observed - perhaps a few hundred or a few

data source
predicate indexes

\

-« predicate index
root

expression
signature list

Figure 3. Predicate Index Structure.

thousand at most. Based on this observation, it is feasible
to keep a set of data structures in main memory to
represent all the distinct expression signatures appearing
in all triggers. Since many triggers may have the same
signature but contain different constants, tables will be
created to store these constants, along with information
linking them to their expression signature. When these
tables are small, low-overhead main-memory lists or
indexes can be used to cache information from them.
When they are large, they can be stored as standard tables
(with an index when appropriate) and queried as needed,
using the SQL query processor, to perform trigger
condition testing. We will elaborate further on
implementation issues below.

5.1. Processing a Trigger Definition

When a create trigger statement is processed, a
number of steps must be performed to update the trigger
system catalogs and main memory data structures, and to
“prime” the trigger to make it ready to run. The primary
tables that form the trigger catalogs are these:

trigger_set(tsID, name, comments, creation_date,
isEnabled)

trigger(triggerID, tsID, name, comments, trigger_text,
creation_date, isEnabled, ...)

The purpose of the isEnabled field is to indicate
whether a trigger or trigger set is currently enabled and
eligible to fire if matched by some update. The other
fields are self-explanatory. A data structure called the
trigger cache is maintained in main memory. This
contains complete descriptions of a set of recently
accessed triggers, including the trigger ID and name,

references to data sources relevant to the trigger, and the
syntax tree and Gator network skeleton for the trigger.
Given current main memory sizes, thousands of trigger
descriptions can be loaded in the trigger cache
simultaneously. E.g. if a trigger description takes 4K
bytes (a realistic number), and 64Mbytes are allocated to
the trigger cache, 16,384 trigger descriptions can be
loaded simultaneously.

Another main memory data structure called a predicate
index is maintained. A diagram of the predicate index is
shown in Figure 3. The predicate index can take an update
descriptor and identify all predicates that match it.

Expression signatures may contain more than one
conjunct. If a predicate has more than one conjunct, a
single conjunct is identified as the most selective one.
Only this one is indexed directly. If a token matches a
conjunct, any remaining conjuncts of the predicate are
located and tested against the token. If the remaining
clauses match, then the token has completely matched the
predicate clause. See [Hans90] for more details on this
technique.

The root of the predicate index is linked to a set of
data source predicate indexes using a hash table on data
source ID. Each data source predicate index contains an
expression signature list with one entry for each unique
expression signature that has been used by one or more
triggers as a predicate on that data source. For each
expression signature that contains one or more constant
placeholders, there will be a constant table. This is an
ordinary database table containing one row for each
expression occurring in some trigger that matches the
expression signature.

When triggers are created, any new expression
signatures detected are added to the following table in the
trigger system catalogs:

expression_signature(sigID, dataSrcID, signatureDesc,
constTableName, constantSetSize,
constantSetOrganization)

The sigID field is a unique ID for a signature. The
dataSrcID field identifies the data source on which the
signature is defined. The signatureDesc field is a text
field with a description of the signature. We will define
the other fields later.

When an expression signature E is encountered at
trigger creation time, it is broken into two parts: the
indexable part, E_I, and the non-indexable part, E_NI, as
follows:

E=E_T AND E_NI
The non-indexable portion may be NULL. The format of
the constant table for an expression signature containing
K distinct constants in its indexable portion is:

const_tableN(exprID, triggerID, nextNetworkNode,
constl, ... constK, restOfPredicate)

Here, N is the identification number of the expression
signature. The fields of const_tableN have the following
meaning:

1. exprlID is the unique ID of a selection predicate E,

2. triggerID is the unique ID number of the trigger
containing E,

3. nextNetworkNode identifies the next A-TREAT
network node of trigger triggerID to pass a token to
after it matches E (an alpha node or a P-node),

4. constl ... constK are constants found in the indexable
portion of E, and

5. restOfPredicate is a description of the non-indexable
part of E. The value of restOfPredicate is NULL if
the entire predicate is indexable.

If the table is large, and the signature of the indexable
pat of the opredicate is of the form
attribute I=CONSTANT1 AND .
attribute K=CONSTANTYK, the table will have a clustered
index on [constl, ... constK] as a composite key. If the
predicate has a different type of signature based on an
operator other than “=", it may still be possible to use an
index on the constant fields. As future work, we propose
to develop ways to index for non-equality operators and
constants whose types are user-defined [Kony98].

Putting a clustered index on the constant attributes will
allow the triggerIDs of triggers relevant to a new update
descriptor matching a particular set of constant values to
be retrieved together quickly without doing random 1/O.
Notice that const_tableN is not in third normal form. This
was done purposely to eliminate the need to perform joins
when querying the information represented in the table.

Referring back to the definition of the
expression_signature table, we can now define the
remaining attributes:

1. constTableName is a string giving the name of the
constant table for an expression signature,

2. constantSetSize is the number of distinct constants
appearing in expressions with a given signature, and

3. constantSetOrganization describes how the set of
constants will be organized in either a main-memory
or disk-based structure to allow efficient trigger
condition testing. The issue of constant set
organization will be covered more fully later in the
paper.

Given the disk- and memory-based data structures just
described, the steps to process a create trigger statement
are:

1. Parse the trigger and validate it (check that it is a
legal statement).

2. Convert the when clause to conjunctive normal form
and group the conjuncts by the distinct sets of tuple
variables they refer to, as described in section 4,

3. Based on the analysis in the previous step, form a
trigger condition graph. This is an undirected graph

with a node for each tuple variable, and an edge for
each join predicate identified. The nodes contain a
reference to the selection predicate for that node,
represented as a CNF expression. The edges each
contain a reference to a CNF expression for the join
condition associated with that edge. Groups of
conjuncts that refer to zero tuple variables or three or
more tuple variables are attached to a special “catch
all” list associated with the query graph. These will
be handled as special cases. Fortunately, they will
rarely occur. We will ignore them here to simplify
the discussion.

4. Build the A-TREAT network for the rule.

5. For each selection predicate above an alpha node in
the network, do the following:
Check to see if its signature has been seen before by
comparing its signature to the signatures in the
expression signature list for the data source on which
the predicate is defined (see Figure 3). If no
predicate with the same signature has been seen
before,
e add the signature of the predicate to the list and

update the expresssion_signature catalog table.

o If the signature has at least one constant

placeholder in it, create a constant table for the
expression signature.
If the predicate has one or more constants in it, add
one row to the constant table for the expression
signature of the predicate.

5.2. Alternative Organization Strategies for
Expression Equivalence Classes

For a particular expression signature that contains at
least one constant placeholder, there may be one or more
expressions in its equivalence class that belong to
different triggers. This number could be small or large.
To get optimal performance over a wide range of sizes of
the equivalence classes of expressions for a particular
expression signature, alternative indexing strategies are
needed. Main-memory data structures with low overhead
are needed when the size of an equivalence class is small.
Disk-based structures, including indexed or non-indexed
tables, are needed when the size of an equivalence class is
large.

The following four ways can be considered to organize
the predicates in an expression signature’s equivalence
class:

main memory list
main memory index
non-indexed database table
4. indexed database table
Strategies 3 and 4 must be implemented to make it
feasible to process very large numbers of triggers
containing predicate expressions with the same signature

hadi b il

< predicate index root

data source
predica;e indexes

expression
signature list

o

constant set (set of

unique constants) \/.

l triggerID set (set of IDs
of different triggers
having same set of
constants)

Figure 4. Expanded View of Normalized
Predicate Index Structure.

but different constants -- they are mandatory in a scalable
trigger system. Strategies 1 and 2 are also required in
order to make the common case (a few thousand triggers
or less) fast. A cost model that illustrates the tradeoffs is
presented in [Hans98b]. Strategies 1 and 2 have been
implemented in TriggerMan and strategies 3 and 4 are
under construction.

53. Common Sub-expression Elimination for
Selection Predicates

An important performance enhancement to reduce the
total time needed to determine which selection predicates
match a token is common sub-expression elimination.
This can be achieved by normalizing the predicate index
structure. Figure 4 shows an expanded view of the
predicate index given in Figure 3. The constant set of an
expression signature contains one element for each
constant (or tuple of constants [constl, ,constK])
occurring in some selection predicate that matches the
signature. Each constant is linked to a triggerID set,
which is a set of the ID numbers of triggers containing a
particular selection predicate. For example, if there are
rules of the form:

create trigger T_I from R when R.a=100do ...

for I=1 to N, then there will be an expression signature
R.a=CONSTANT, the constant set for this signature will
contain an entry 100, and the triggerID set for 100 will
contain the ID numbers of T_1 ... T_N.

We will implement constant sets and triggerID sets in a
fully normalized form, as shown in Figure 4, when these
sets are stored as either main memory lists or indexes
(organizations 1 and 2). This normalized main-memory
data structure will be built using the data retrieved from
the constant table for the expression signature.

5.4. Processing Update Descriptors Using the

Predicate Index

Recall that an update descriptor (token) consists of a
data source ID, an operation code, and an old tuple, new
tuple, or old/new tuple pair. When a new token arrives,
the system passes it to the root of the predicate index,
which locates its data source predicate index. For each
expression signature in the data source predicate index, a
specific type of predicate testing data structure (in-
memory list, in-memory lightweight index, non-indexed
database table, or indexed database table) is in use for that
expression signature. The predicate testing data structure
of each of these expression signatures is searched to find
matches against the current token.

When a matching constant is found, the triggerID set
for the constant contains one or more elements. Each of
these elements contains zero or more additional selection
predicate clauses. For each element of the triggerID set
currently being visited, the additional predicate clause(s)
are tested against the token, if there are any.

When a token is found to have matched a complete
selection predicate expression that belongs to a trigger,
that trigger is pinned in the trigger cache. This pin
operation is analogous to the pin operation in a traditional
buffer pool; it checks to see if the trigger is in memory,
and if it is not, it brings it in from the disk-based trigger
catalog. The pin operation ensures that the A-TREAT
network and the syntax tree of the trigger are in main-
memory. After the trigger is pinned, ensuring that it’s A-
TREAT network is in main memory, the token is passed
to the node of the network identified by the
nextNetworkNode field of the expression that just
matched the token.

Processing of join and temporal conditions is then
performed if any are present. Finally, if the trigger
condition is satisfied, the trigger action is executed.

6. Concurrent Token Processing and

Action Execution

An important way to get better scalability is to use
concurrent processing. On an SMP platform, concurrent
tasks can execute in parallel. Even on a single processor,
use of concurrency can give better throughput and
response time by making scarce CPU and I/O resources
available to multiple tasks so any eligible task can use
them. There are a number of different kinds of
concurrency that a trigger system can exploit for improved
scalability:

1. Token-level concurrency: multiple tokens can be
processed in parallel through the selection predicate
index and the join condition-testing network.

10

(from top part of
predicate index)

. — - CXpression
signature list

s B
.—.2

\/_‘ N
triggerID set (set of IDs
of different triggers
having same constant
appearing for a
particular signature)

constant set (set of
unique constants)

Figure 5. lllustration of partitioned constant
sets and triggerID sets to facilitate concurrent
processing.

2. Condition-level concurrency: multiple selection
conditions can be tested against a single token
concurrently.

3. Rule action concurrency: multiple rule actions that
have been fired can be processed at the same time.

4. Data-level concurrency: a set of data values in an
alpha or beta memory node of an A-TREAT or Gator
network [Hans97] can be processed by a query that
can run in parallel.

For ideal scalability, a trigger system must be able to
capitalize on all four of these types of concurrency. The
current implementation supports token level concurrency
only. We plan to support the other types of concurrency
in future versions of the system. Such a future version will
make use of a task queue kept in shared memory to store
incoming or internally generated work. An explicit task
queue must be maintained because it is not possible to
spawn native operating system threads or processes to
carry out tasks due to the process architecture of Informix
[Info99].

The concurrent processing architecture, as illustrated in
Figure 1, will make use of N driver processes. We define
NUM_CPUS to be the number of real CPUs in the
system, and TMAN_CONCURRECY_LEVEL to be the
fraction of CPUs to devote to concurrent processing in
TriggerMan, which can be in the range (0%,100%]. The
TriggerMan administrator can set the
TMAN_CONCURRENCY_LEVEL parameter. Its
default value is 100%. N is defined as follows:

N =[NUM_CPUS*TMAN_CONCURRENCY_LEVEL]

Each driver process will call TriggerMan's TmanTest()
function every T time units. Each driver will also call back
immediately after one execution of TmanTest() if work is
still left to do. We propose a default value of T equal to
250 milliseconds; determining the best value of T is left
for future work. TmanTest will do the following:

while(total execution time of this invocation of
TmanTest < THRESHOLD and work is left in the
task queue)

{
Get a task from the task queue and execute it.
Yield the processor so other Informix tasks can use it
(call the Informix mi_yield routine [Info99}).

}

if task queue is empty

return TASK_QUEUE_EMPTY
return TASKS_REMAINING

The driver program will wait for T time units if the last
call to TmanTest() returns TASK_QUEUE_EMPTY.
Otherwise, the driver program will immediately call
TmanTest() again. The default value of THRESHOLD
will be 250 milliseconds also, to keep the task switch
overhead between the driver programs and the Informix
processes reasonably low, yet avoid a long user-defined
routine (UDR) execution. A long execution inside
TriggerMan should be avoided since it could result in
higher probability of faults such as deadlock or running
out of memory. Keeping the execution time inside
TriggerMan reasonably short also avoids the problem of
excessive lost work if a rollback occurs during trigger
processing.

Tasks can be one of the following:

1. process one token to see which rules it matches

2. run one rule action

3. process a token against a set of conditions

4, process a token to run a set of rule actions triggered
by that token

Task types 1 and 2 are self-explanatory. Tasks of type
3 and 4 can be generated if conditions and potential
actions (triggerID structures containing the “rest of the
condition”) in the predicate index are partitioned in
advance so that multiple predicates can be processed in
parallel. An example of when it may be beneficial to
partition predicates in advance is when there are many
rules with the same condition but different actions. For
example, suppose there are M rules of the form:

create trigger T_K
fromR
when R.company = "IBM"
do raise event notify_user("user K", R.company,
R.sharePrice)

for K=1.M. If M is a large number, a speedup can be
obtained by partitioning this set of triggers into N sets of
equal size. This would result in a predicate index
substructure like that illustrated in Figure 5.

Here, the triggerID set would contain references to
triggers T_1 ... T_M. These references would be
partitioned round robin into N subsets of approximately

11

equal size. Multiple subsets would be processed in
parallel to achieve a speedup.

7. Trigger Application Design

The trigger system proposed in this paper is designed
to be highly scalable. However, just because programmers
can create a large number of triggers does not mean that is
always the best approach. If triggers have extremely
regular structure, it may be best to create a single trigger
and a table of data referenced in the trigger’s from clause
to customize the trigger’s behavior. This is discussed in
more detail in a longer version of this paper {Hans98b].

8. Related Work

There has been a large body of work on active database
systems, but little of it has focussed on predicate indexing
or scalability. Representative works include HiPAC,
Ariel, the POSTGRES rule system, the Starburst Rule
System, A-RDL, Chimera, RPL, DIPS and Ode
[Hans96,McCa89,Ston90,Wido96]. Most active database
systems follow the event-condition-action (ECA) model
proposed for HiPAC in a straightforward way, testing the
condition of every applicable trigger whenever an update
event occurs. The cost of this is always at least linear in
the number of triggers associated with the relevant event
since no predicate indexing is normally used. Moreover,
the cost per trigger can be high since checking the
condition can involve running an expensive query.

Work by Hanson and Johnson focuses on indexing of
range predicates using the interval skip-list data structure
[Hans96b], but this approach does not scale to very large
numbers of rules since it may use a large amount of main
memory. Work on the Rete [Forg82] and TREAT
[Mira87] algorithms for efficient implementation of Al
production systems is related to the work presented here,
but the implicit assumption in Al rule system architectures
is that the number of rules is small enough to fit in main
memory. Additional work has been done in the AI
community on parallel processing of production rule
systems [Acha92], but this does not fully address the issue
of scaling to large numbers of rules. Issues related to
high-performance parallel rule processing in production
systems are surveyed by Gupta et al. [Gupt89]. They cite
several types of parallelism that can be exploited,
including node, intranode, action, and data parallelism.
These overlap with the types of concurrency we outlined
in section 6. Work by Hellerstein on performing
selections after joins in query processing [Hell98] is
related to the issue of performing expensive selections
after joins in Gator networks and A-TREAT networks
[Kand98]. Proper placement of selection predicates in
Gator networks can improve trigger system performance,
and thus scalability.

The developers of POSTGRES proposed a marking-
based predicate indexing scheme, where data and index
records are tagged with physical markers to indicate that a
rule might apply to them [Ston87,Ston90]. Predicates that
can’t be solved using an index result in placement of a
table-level marker. This scheme has the advantage that
the system can determine which rules apply primarily by
detecting markers on tables, data records, and index
records. Query and update processing algorithms must be
extended in minor ways to accomplish this.

A disadvantage of this scheme is that it complicates
implementation of storage and index structures.
Moreover, when new records are inserted or existing
records are updated, a large number of table-level markers
may be disturbed. The predicate corresponding to every
one of these disturbed markers must be tested against the
records, which may be quite time-consuming
[Ston87,Ston90). This phenomenon will occur even for
simple predicates of the form attribute=constant if there is
no index on the attribute.

Research on the RPL system [Delc88a,Delc88b]
addressed the issue of execution of production-rule-style
triggers in a relational DBMS, but its developers did not
use a discrimination network structure. They instead used
an approach that runs database queries to test rule
conditions as updates occur. This type of approach has
limited scalability due to the potentially large number of
queries that could be generated if there are many rules.
Work on consistent processing of constraints and triggers
in SQL relational databases {Coch96] has helped lead to
recent enhancements to the SQL3 standard. However, the
focus of this work is on trigger and constraint semantics.
An implicit assumption in it is that constraints and triggers
will be processed using a query-based approach, which
will not scale up to a large number of triggers and
constraints. We speculate that it may be possible to work
around this assumption. A predicate index like the one
proposed in this paper potentially could be used.

The DIPS system [Sell88] uses a set of special
relations called COND relations for each condition
element (tuple variable) in a rule. These COND relations
are queried and updated to perform testing of both
selection and join conditions of rules. Embedding all
selection predicate testing into a process that must query
database tables is not particularly efficient —~ it will not
compare favorably to using some sort of main-memory
predicate index. A main-memory predicate index should
be used to get the best performance for a small-to-medium
number of predicates, which is the common case.
However, DIPS was capable of utilizing parallelism via
the database query processor to test rule conditions, a
feature in common with the system described in this
paper. The DATEX system addresses the issue of
executing large expert systems when working memory is

12

kept in a database [Bran93], and is thus related to rule
system scalability. A contribution of the DATEX system
was an improved way to represent information normally
kept in alpha-memory nodes in TREAT networks.
However, DATEX was focussed on large-scale
production systems, whereas the work presented in this
paper is oriented to handling large numbers of triggers
that operate in conjunction with databases and database
applications, so our work is not directly comparable to
DATEX. In summary, what sets our work apart from
prior research efforts on database trigger systems and
database-oriented expert systems tools is our focus on
scalability from multiple dimensions. These include the
capacity to accommodate large numbers of triggers,
handle high rates of data update, and efficiently fire large
numbers of triggers simultaneously. We achieve
scalability through careful selection predicate index
design, and support for four types of concurrency (token-
level, condition-level, rule-action-level, and data-level).

9. Conclusion

This paper describes an architecture that can be used to
build a truly scalable trigger system. As of the date of this
writing, this architecture is being implemented as an
Informix DataBlade along with a console program, a
driver program, and data source programs. The
architecture presented is a significant advance over what
is currently available in database products. It also
generalizes earlier research results on predicate indexing
and improves upon their limited scalability
[Forg82,Mira87,Ston87,Hans90,Hans96]. This
architecture could be implemented in any object-relational
DBMS that supports the ability to execute SQL statements
inside user-defined routines (SQL callbacks). A variation
of this architecture could also be made to work as an
external application, communicating with the database via
a standard interface (ODBC [Geig95}).

One topic for future research includes developing ways
to handle temporal trigger processing [Hans97,AIFa98] in
a scalable way, so that large numbers of triggers with
temporal conditions can be processed efficiently. Another
potential future research topic involves ways to support
scalable trigger processing for trigger conditions involving
aggregates. Finally, a third potential research topic is to
develop a technique to make the implementation of the
main-memory and disk-based structures used to organize
the constant sets illustrated in Figure 4 extensible, so they
will work effectively with new operators and data types.
In the end, the results of this paper and the additional
research outlined here can make highly efficient, scalable,
and extensible trigger processing a reality.

References

[Acha92] Acharya, A, M. Tambe, and A. Gupta,
“Implementation of Production Systems on Message-Passing
Computers,” IEEE Transactions on Knowledge and Data
Engineering, 3(4), July 1992.

[AlFa98] Al-Fayoumi, Nabeel, Temporal Trigger Processing in
the TriggerMan Active DBMS, Ph.D. dissertation, Univ. of
Florida, August, 1998.

[Bran93] Brant, David A. and Daniel P. Miranker, “Index
Support for Rule Activation,” Proceedings of the ACM
SIGMOD Conference, May, 1993, pp. 42-48.

[Coch96] Cochrane, Roberta, Hamid Pirahesh and Nelson
Mattos, “Integrating Triggers and Declarative Constraints in
SQL Database Systems,” Proceedings of the 22nd VLDB
Conference, pp. 567-578, Bombay, India, 1996.

[Date93] Date, C. J. And Hugh Darwen, A Guide to the SQL
Standard, 3" Edition, Addison Wesley, 1993.

[Delc88a] Delcambre, Lois and James Etheredge, “The
Relational Production Language: A Production Language for
Relational Databases,” Proceedings of the Second International
Conference on Expert Database Systems, pp. 153-162, April
1988.

{Delc88b] Delcambre, Lois and James Etheredge, “A Self-
Controlling Interpreter for the Relational Production Language,”
Proceedings of the ACM-SIGMOD Conference on Management
of Data, pp. 396-403, June 1988.

{Forg82] Forgy, C. L., Rete: “A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem,” Arsificial
Intelligence, vol. 19, pp. 17-37, 1982.

[Geig95] Geiger, Kyle, Inside ODBC, Microsoft Press, 1995.
[Gupt89] Gupta, Anoop, Charles Forgy and Allen Newell,
“High Speed Implementations of Rule-Based Systems,” ACM
Transactions on Computer Systems, vol. 7, no. 2, pp. 119-146,
May, 1989.

[Hans90] Hanson, Eric N., M. Chaabouni, C. Kim and Y.
Wang, “A Predicate Matching Algorithm for Database Rule
Systems,” Proceedings of the ACM-SIGMOD Conference on
Management of Data, pp. 271-280, Atlantic City, NJ, June
1990.

[Hans96] Hanson, Eric N., “The Design and Implementation of
the Ariel Active Database Rule System,” IEEE Transactions on.
Knowledge and Data Engineering, vol. 8, no. 1, pp. 157-172,
February 1996.

[Hans96b] Hanson, Eric N. and Theodore Johnson, “Selection
Predicate Indexing for Active Databases Using Interval Skip
Lists,” Information Systems, vol. 21, no. 3, pp. 269-298, 1996.
{Hans97] Hanson, Eric N., N. Al-Fayoumi, C. Carnes, M.
Kandil, H. Liu, M. Lu, J.B. Park, A. Vernon, “TriggerMan: An
Asynchronous Trigger Processor as an Extension to an Object-
Relational DBMS,” University of Florida CISE Dept. Tech.
Report 97-024, December 1997. hitp://www.cise.ufl.edu.
[Hans97b] Hanson, Eric N., Sreenath Bodagala, and Ullas
Chadaga, “Optimized Trigger Condition Testing in Ariel Using
Gator Networks,” University of Florida CISE Dept. Tech.
Report 97-021, November 1997. http://www.cise.ufl.edu.

[Hans98] Hanson, Eric N., I.C. Chen, R. Dastur, K. Engel, V.
Ramaswamy, W. Tan, C. Xu, “A Flexible and Recoverable
Client/Server Database Event Notification System,” VLDB
Journal, vol. 7, 1998, pp. 12-24.

[Hans98b] Hanson, Eric N. et al., “Scalable Trigger Processing
in TriggerMan,” TR-98-008, U. Florida CISE Dept., July 1998.
http://www.cise.ufl.edu

[Hell98] Hellerstein, J., “Optimization Techniques for Queries
with Expensive Methods,” to appear, ACM Transactions on
Database Systems (TODS). Available at
www.cs.berkeley.edu/~jmh.

[Info99] “Informix Dynamic Server, Universal Data Option,”
http://www.informix.com.

[Kand98] Kandil, Mohktar, Predicate Placement in Active
Database Discrimination Networks, Ph.D. Dissertation, CISE
Department, Univ. of Florida, Gainesville, August 1998.
[Kony98] Konyala, Mohan XK., Predicate Indexing in
TriggerMan, MS thesis, CISE Department, Univ. of Florida,
Gainesville, Dec. 1998.

[McCa89] "McCarthy, Dennis R. and Umeshwar Dayal, “The
Architecture of an Active Data Base Management System,”
Proceedings of the. ACM SIGMOD Conference on Management
of Data, Portland, OR, June, 1989, pp. 215-224.

[Mira87] Miranker, Daniel P., “TREAT A Better Match
Algorithm for Al Production Systems,” Proceedings of the AAAI
Conference, August 1987, pp. 42-47.

[Sell88] Sellis, T., C.C. Lin and L. Raschid, “Implementing
Large Production Systems in a DBMS Environment: Concepts
and Algorithms,” Proceedings of the 1988 ACM SIGMOD
Conference.

[Ston87] Stonebraker, M., T. Sellis and E. Hanson, “An
Analysis of Rule Indexing Implementations in Database
Systems,” Expert Database Systems: Proceedings from the First
International Workshop, Benjamin Cummings, 1987, pp. 465-
476.

[Ston90] Stonebraker, Michael, Larry Rowe and Michael
Hirohama, “The Implementation of POSTGRES,” IEEE
Transactions on Knowledge and Data Engineering, vol. 2, no.
7, March, 1990, pp. 125-142,

[Wido96] Widom, J. And S. Ceri, Active Database Systems,
Morgan Kaufmann, 1996.

NP 1IN ISId @) uosuey
BPLIO[] JO AINSIOATU)
yuaunteda g 4SID
UOSUBH oLy

Ae A\ URJAJTOSSIIT, QU T,
:3UNIOTY puk SULIAZSIL], 9[qe[eoS

000¢C "uef

14

ueA1e331],

osn 0] ASed 1 oWl —

suorjoun] [erodurd) pue ‘sdjegaI3se
‘sutof ‘SuOTo9[oS SUIAJOAUI SUONIPUOD 13T S[puey —

own asuodsar ajepdn
uo 10edwr 9onpal 03 Jurssad0id sSNOUOIYOUASE asn —

s19331N Jo suorruu 0} dn d[puey —

15

w19)sAs 103311 9[qe[eos ‘)se) e do[oAdp —
:S[BOD)

9TeOS 1,UOP SWAISAS IO331I) JUALIND (WIS[QOI]

uononponNuJ

U133],

N

,, = [OQUIAS Y00]S —

LLV,, = [OqUAS"Y00)S —

wm °

SIUBISUOD) UL 9q [[IM OUIISJJIP Y], o

JRULIO] QWIBS AU) 9ARY [[IM SIOSSLI) AUBIA o

ISTWIAL]

16

UeATa8S 1],

((0S)IeyoreA
QuIeu ‘1o891ul ouQd)dwd 92IN0S BIep eAI0 —

17

(Isr7eInquie)
QUIB N[2JINO0S 32INO0S BIEePp 231ealo —

URJAIOSSII], 0] S3[qe) QUIJI(J e

S22IN0YG vle(]

URA[10SS1I],

UO01JOD Op
[uon1puos uayMm |
[02d§11240 UO]
1S1TUL0Af WI0I]
[2wpp12s Ut <oureN193311)> 103311 9)RaI0 —

UoTedI) J93III]

18

UBAIOS31L],

4 ueAI108311], opejgeie(U331, |
S1qeL 2 _
onon() arepdn
IOALI(1B3HL ,
= 90Imog ere(
uond(Q eie([eSIoATU()

Jia xTunioguy -SINJd 1S0H

(UOISIOA Spe[deIre()
9INJONIYIIY WAISAS

ueNI93311],

uorndo SNOUOIYIUAS OU :90UuBULIOJId 9SI0M :SYORQMEID e
S, SINA{ a1dnnu 03 LAyigesrjdde :o3vjueApe o

[ddy wen5
2| ueAI08311],

ERN

[ddy wony
4 ueN 103311],

IOAIDS 2IeMI[PPIN
UBJAII033 11],

$9552001d deredas .

§ I R I e B e S T T, T

[orosuop
4| ue\I0881I],

T S

JIqeL
anan aepdn

19381y,
901n0§ elR[g

SN 1SOH

UOISId A SIBMI[PPIA

20

ueI0831],

-+ op uay)
X, =e Ty pue

OUCI CY=0UCI 7Y pue
OUTI ZY=O0UTI [UayMm
¢ "TY ‘1Y woxy

], 393311 918210

21

(po‘ougcn ey
(ougrournzy
(Qe‘outn 1y

J198311], ordureg

ueA1e8811],

opou-d

oucr ey oulrIgy

=0UucI'?y =oulI ¥y
(remma)getdpe (Tenyama)geddre (tenyaia) Teydre
|
4 nxu v”@) .H m
gY=u[oI zg=upeI [=ufex

FIOMIIN LVHUL JeTHIA 210,

22

URAIIR8S LI,

(ToquiAs INV.ISNOD) sproyaoerd Aq
pAIMINISQNS SjuLISUOD pey Sey asne[d yoeq e

("™ MO0 Do M0 L) ANV ANV (Vo O M0 “o M0 L))
;UOISSAIAX9 PIZI[RIAUALD)

("5 ¥0 M0 Yo M0 D) ANV ANy (YD d0 " ¥0 0 ¥0o D)

:(sasnepd “1eA 91dny
[‘AND) uoIssaidxa 91eo1paid uond[as e

SUOISSAIAXH PazI[eIouan)
pue suoIssaIdxs 91ed1pald

23

URA1e83 1],

uoI1ssaxdxa 9A0qe)
Se SSe[0 Qwes Ul ST)000S < Arefes-duo *3'4

SUOISSAIAXD JO SSB[O 90U[BAINDS U SAUIJO(T

2AMIPUS1S UO1SSDAAXD
ue po[Ied 2q [IM UoIssaIdxa pazijerouan)

INVISNOD < Arefes:dwo :'adxg pazifeiouan) —
00008 < Arepes dwio :uorssordxyg —

"X
suorssaxdxyg 4

PIZI[RIAUAL) ‘SA SUOISSAIAXT

24

URA1933 1],

1ST] 9INJRUSIS
uoissardxo —» @—

soxopul 9eorpaid e
< 50InoSs vIep

1001 XopuIt 9)eo1pard — >

MITATOAQ) [OAY]
U3IIH “Xopuj 91ed1palJ Uond[as

UeA 108381,

1 3surede pa1do Ing ‘sasse[d aous[eAInba a8re[10] so[qe) JUBISUOD
Sursn 29 YSIp uo suonmuyep 1035} [[¢ SULIO)S PIIOPISUOD A e

I3)seJ 9q 03 Spaau aw) J00q Je SuIpeo] 193311, .

‘HOJJ°
PIM UoIIuu ® ‘A[Ises s10331n Jo spuesnoyl Jo s,Q] O) SI[BOS e

‘pambai are 10851 10d $A4q M INoqy
‘sown [[e je Arowrowr urew ur suonturyep 19881 e dooy op .

XapuI AIOWSW UrBW '

IST[ATOUIaUX Uureus ‘|

S9SSB[)) QoudreAInby uorssaidxqg 10]
SOI39)eI)S UONBZIURII() SATIRUIONY

26

(sjueisuod

JO 198 oures Suraey
S198311 JUAIJJIP JO

S(J] JO 198) 19 (QI19331n

.l .

181 21myeudIs
uorssoxdxo —» @—

1001 xoput 91eo1paid —p°

ueAo881LY,

(syueisuod anbrun
JO 198) 198 JUBISUOD

soxoput 9yeorpaid
<4 30InoS elep

XopuJ A1BIIPaId JO MIIA Pafrerd

27

U\ 0831 T,

'SMOI N J1IM 9[qe)

e snd 103311 sjqerea o[dn}-om) suo our s198311)
JIqeLreA o[dm-ouo N uIn) :onbruyos) urepy

‘dde 1o oZeurewr

0} JOISE 1 9¥eW 0) SI9FSLI) JO JoqUINU S0NPal

0} sonbruyoa) asn ueos sredofoasp uoneordde ng
'SI198311 Auewl 00) Sunear

Inoqe yonuwr 00} A11om 03 s1adofaasp uoneoridde
oImbar 10U 1M woIsAs 10331 o[qeress IO

ugr1so uonedrddy 108311,

28

U\ 19831,

‘SN 01 Axonb
jmwgns pue 9jejdwa Aronb,, v ojur ojdm Snyd ‘o[qeriea
o[dm auo uo yojeur 91eoIPpaId UOI)IJ[AS B 193 NOA JT —

+ 0p
AoJ,, =ouwreudap pue ,qog,, = sweu dwo pue
oup-dop = oup'duro uoym
1dap ‘dwrd woxy

], 19831n 9jeaI1d —
(Surp[nqg ‘aweu ‘oup)idap

(oup ‘awreu ‘oud)dwo —

odwexyq e

uonisoduroda(g
Aran() Surs) 3uIssad0iq JOSIII, UIOf

29

UBA[193311

1dop 1sure3e Axonb derouad :days 1xou —
..909g,, = awreu dwd uo yojeur —
(T ©..909,, ‘7)sonteA dwa ojur 119sur —
X e
A1drerpawwur dojs ‘yojewr yeorpaid :oﬁoﬂom.o: —

(T ©..onG,, ‘1)sanjeA durd ojur JIasur —

L XH e

P10 SUINSA], UOIIPUO) JOFFIL], UIO[

30

ueN19831,

SaI1J 193311 AY) ‘PIAALNAI 1k s9[dn) Aue JI
Lo, = oureudop pue
7 = oup-1dap aroym
1dop woiy
" 1dop ‘oup~dwa se g ‘owreu dwio se qog,, ‘oud” dwo se 7 1090 —
:91dm uryojewr 01 anp pajerouasd Aronb rempoy

A0],, = oawreudop pue

OUp I TdNIJINA = oup-dop a1oym
1dop wory

+1dop T TdNIJINH 109198 —
:9[qerreA 91dm duro 103 9rejdwa], A1onQ)

1do(q Isure3dy AronQ)
:orduwrexyg 103311 UIOf

31

uBJA[IeSS1I],

3uryorews wxaned
urol op 03 viep paiols isurede sorranb jorreIRd UNY —

[9A9] BIRp

A[IUQ1INOUOD
suonoe N uni ‘sa[nx N s1033L) epdn duo JI —

[9AQ] UONOR-J[NI

AJIUQLINOUOD
SUOTIIPUOD UOTIIIAS N ISure3e uayo) auo ssa001d —

[9AQ] UOTIIPUOD
APUaunduod suayol N ssaooid —
(12A9] 10)d110s9p-91epdn) [9A9] UIYO)

wIsIo[eIed

32

ueA 39831

(2amyeudis renonted
e 10J Surreadde
JuRISUOD awres SujAey
$103311 JUIALJIp JO

N [4
S JO 19S) 198 (q[0331n * % ﬂ

(sjueisuod anbrun
JO 138) 198 JULRISUOD

1ST] 2Ijeu3Is
uorssoxdxs — ™ o

(xopur ojeorpaid
Jo 11ed doy woiy)

XopUuJ 9eoIpaId
[o[[eIed ‘pouonnied :JIOA\ dInng

33

UBA198311],

snjeis 19Alp

si90p 9| sis0p 2| sieop g sie0p ¥
[1 1 Il o
& “V m.o
puodss gL —o— /”!/0 3
pUODOS G ——r .
puooes z2'g . _ — Gl
[—— Y ri;.izz;é»iﬂ; el
puooas | —t S T o
aumn G0 —e— x\\\\\\mx 2 T
Surssasoid L0 —%— | o oz 2
OﬂQElhOQ GO0 ~—x— \\\l e
. —+
H0°0 —v— % —— \\ €
—.OO.O = J|V\A)
9000°0 —4— i ~ s
/lOl\\\\\\.\q *
-G

(JINS 10S52201d §) 9ouBULIOIo]
IQALI([-PIPeAIYIN NN UOISID A dpe[geie(

34

URNI98311],

uoneinbyuos 1aauQ

SI90p g} SI90p @ SIS0pQ SI90p y S1e0p g J9op |

s1o66u1 0005
s1e66u) 000E —m—
s1ebbu) 0001 —¢—

J9ALIp papeaiyyynw 1aop-| Jsuiebe dnpaadsg

UOISIO A\ 9IeMI[PPIN Jo dnpaadS

35

URAIo33 1,

uoneinbyuon JaAlQg

SI90p gL SIeOpg SIeop g SIeop 4y SIsop Z SIsop |

's186613 0005
s1abbuy 00og —m—

s1966u) 000 —o—

laAlQ Uoisia) apejqeleq papealyl-ajbuls jsuieby dnpoadg

UOISIO A AIeMIPPIA Jo dnpoadg

36

eS8,

A11991100 a11] S193311) J[qe)-Inu
A[1091100 911 S193311) 9[(R)-J[UIS

(so13a1e1s 1s1]-dIys pue IsI[) pajuduafdur
Xopur 91edIpaid UonI9[es Iqeeds

pojuowo[dw Surpurq uoTOR/UONIPUOD
108311 ‘SoTeIed 193311} Iy 2dA) ‘1os1ed

sMe)§ uoneyuau[dury

37

ueA103311],

uonerduwos reuonIpuod Yirm payroddns
SpIq sSpe[geie(pue 2IeMI[PPIN
9p03 D JO saul] 000 9¢ noqe

sadA) TewIroap pue ‘19)08IRYD

‘yurod 3umneor ‘1a3ajur [k supoddns

‘P10 smels uonejuawardury

38

ueI03S 1L,

QNG SunsIxe ue yim asn

JOJ 2INOANIYOIe SI IOU ‘pPassaIppe J0u ST urxopul
ayeorpaid [ofeted 1ng ‘Surxoput 1edIpaid SSNOSIP
[96 "SAS -oFu] ‘uosueH ‘06 AONOIS ‘UosueH]
AJIQeTROS WIQ)SAS

103311 10 Surxapur 9)ed1paid uo 0] S[oyM B JON

LVTIL 919y :swd)sks uononpoid [y

e 10S
‘TPUnUAS ‘eIOWIY) “TAY-V “OpQ 1singiels
‘STIDLSOd ‘DVdIH ‘[PUY :SW)SAS I03311],

UOIRISIY PAR[Y

39

ueA1e8S 1],

(Sunnox agessow 9[qrINSIJUOD/UOTIRISIIUT
uoneordde osudioua jx0ddns 03 WIISAS
o) oMY NOAN SYI0MIAN JO I MIN
1JOSPIRAQUIA ‘O1108918))
:SUIQ)ISAS SUNII[R IBRMI[PPIU UIALIP-IOWI T,

(3Jos] ‘@1emilJos UOISIA
‘UOTY WINUIIR[J) SWIISAS SI[NI SsauIsng

$J10ss2001d 193311 SING(ur-ing

JIOA\ [BIOIOWIWIO)) PAIR[NY

40

ueA 831

uonjezuoyne pue A1ndss SING Yia sHIoM

Je1) WISTURYOSW UOTJeZLIOyINe pue AJLInods 103311 do[oAdp
uonendrueur

108811 10J S90RJIOIUT Josn Jsn-03-Ased dO[aAdp

wist[oered [9A9]

-yoroe pue wsI[[ered [9A[-UOTIPUOD SUN) pue yuowroduur

sojeda1s3e podnois
pue ‘sajego135e ‘sonfea o[Surs uo s19331N rezodurd) JOPISUOD —

Sanura ¢ Ul 9501 %Q S2SLAIOUI Y JO anjeA 3y} JI awl ¢, —
s10331n Terodud)

oImn,J oY) IO

41

ueA1e331],

"SUIQISAS I9G31) [RIDIOWILLIOD JUALIND

pue SWAISAS YoIBasaI Y)0g JOAO QOUBAPR JURILJIUIIS
s[eo3 aourwioiad pue AI[Iqe[eos 9AdIYOR

Texed pue xopul 9)eoIpaid o[qe[eos 9s) e
Q0BJIUIL ASN-0)-ASLA Uk Ip1Aoid —
JSeJ SUOT)OR UNI pue SUONIPUOd 193311} 1S9 —

$193311) Jo s1oquinu a31e[1oddns —
:S9ATIA[QO) o

0] WSI[9

uoISNjouo0))

ING OFFiCE: 2000-510-079-81284

42

®U.S. GOVERNMENT PRINT

DISTRIBUTION LIST

addresses

DR. RAYMOND A. LYUZZI
AFRL/ZIFTD

525 BROOKS ROAD

ROME NY 13441-4505

UNIVERSITY OF FLORIDA
CISE DEPARTMENT
GAINESVILLE, FL 32511

AFRLIIFOIL
TECHNICAL LIBRARY
26 ELELTRONIC PKY
ROME NY 13441-4514

ATTENTION: ODTIC-0CC
DEFENSE TECHMICAL INFO CENTER

8725 JOHN J. KINGMAN ROAD, STE 0944

FT. BELVOIR, VA 22060-56213

DEFENSE ADVANCED RESEARCH
PROJELTS AGENCLY

3701 NORTH. FAIRFAX DRIVE
ARLINGTON VA 22203-1714.

ATTN: NAN PFRIMMER

IIT RESEARCH INSTITUTE
201 MILL 57,

ROME, NY 13440

AFIT ACADEMIC LIBRARY

AFIT/LDR, 2950 P.STREEY

AREA B, BLDG 642

WRIGHT-PATTERSON AF3 OH 45433-7765

AFRL/MLME
2977 P STREET., STE 6
WRIGHT-PATTERSON AF3 OH 45433-7739

pL-1

nusber
of copies

10

AFRL/HESC-TDC
2698 G STREET, BLDG 190
WRIGHT-PATTERSON AF3 OH 45433-7604

ATTN: SMDC IM PL

US ARMY SPACE & MISSILE DEF CMD
Pa0a. 30X 1500

HUNTSVILLE AL 35807-3801

TECHNICAL LIBRARY DO274(PL~-TS)
SPAWNARSYSCEN

53560 HULL ST.

SAN DIEGD CA 92152-5001

COMMANDER, CODE 4TLOOOD
TECHNICAL LIBRARY, NAWC-WD
1 ADMINISTRATION CIRCLE
CHINA LAXE CA 93555-5100

CORs, US ARMY AVIATION % MISSILE CHMD
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSAM-RD-03-R, (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORT LIBRARY

MS P354

LOS ALAMOS NATTONAL LABORATORY
LOS ALAMOS NM 87545

ATTN: D°*BORAH HART
AVIATION BRANCH SVC 122.10
FOB10A, RN 931

800 INDEPENDENCE AVE, SW
WASHINGTON DC 20591

AFIWC/MSY
102 HALL BLVD, STE 315
SAN ANTONIO TX 78243-7016

ATTN: KARDLA M. YOURISON
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE

PITTS3URGH PA 15213

DL-2

USAF/AIR FORCE RESEARCH: LABORATORY'
AFRL/VSOSACLIBRARY-BLDE 1103)

5 WRIGHT DRIVE

HANSCOM AFB MA 01731-3004

ATTN: ETLEEN LADUKE/D460
MITRE CORPORATION
202 BURLINGTON RD
BEDFORD MA 01730

QUSD(PI/DTSA/DUTD

ATTN: PATRICK G. SULLIVAN, JR.
400 ARMY NAVY DRIVE

SUITE 300

ARLINGTON VA 22202

SOFTWARE ENGR'G INST TECH LIBRARY
ATTH: MR DENMNIS SMITH

CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213-3890

USC~I31

ATTN: DR ROBERT M. BALZER
4576 ADMIRALTY WAY

MARINA DEL REY CA 90292-6695

KESTREL INSTITUTE

ATTN: DR CORDELL GREEN
1801 PAGE MILL ROAD
PALD ALTD CA 94304

ROCHESTER INSTITUTE OF TECHNOLOGY
ATTN: PROF J. A. LASKY

1 LOMB MEMDRIAL DRIVE

P.D. 30X 93387

ROCHESTER NY 14613-5700

AFIT/ENS
ATTN:TOM HARTRUM
WPAFB OH 45433-6583

THE MITRE CORPORATION

ATTN: MR EDWARD H. BENSLEY
BURLINGTON RD/MAIL STOP A3S50
BEDFORD MA 01730

DL-3

ANDREW A. CHIEN

SAIC CHAIR PROF (SCI APL INT CORP)
USCD/CSE-APEM 4808

9500 SILMAN DRIVE, DEPT. 0114
LAJOLLA CA 92093-0114

HONEYWELL, INC.

ATTN: MR BERT HARRIS
FEDERAL SYSTENMS

7900 WESTPARK DRIVE
MCLEAN VA 22102

SOFTWARE ENGINEERING INSTITUTE
ATTN: MR. WILLIAM E. HEFLEY
CARNEGTE~MELLON UNIVERSITY

304 OAK GROVE CT

WESFORD PA 15090

UNIVERSITY OF SOUTHERN CALIFORNIA
ATTN: DR. YIGAL ARENS
INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY/SUITE 1001
MARINA DEL REY CA 90292-6695

COLUMBIA UNIV/DEPT COMPUTER SCIENCE
ATTN: DR GAIL E. KAISER

450 COMPUTER SCIENCE BLDG

500 WEST 120TH STREET

NEW YODRK NY 10027

AFIT/ENG

ATYN: DR GARY B. LAMONT

SCHOOL OF ENGINEERING

DEPT ELECTRICAL & COMPUTER ENGRS
WPAFS OH 45433-6583

NSAJOFC OF RESEARCH

ATTN: MS MARY ANNE OVERMAN

9800 SAVAGE ROAD

FT GEORGE G. MEADE MD 20755-5000

TEXAS INSTRUMENTS INCORPORATED
ATTN: DR DAVID L. WELLS

P.0. BOX 655474, MS 238
_DALLAS TX 75265

KESTREL DEVELOPMENY CORPORATION
ATTN: DR RICHARD JULLIG

3260 HILLVIEW AVENUE

PALO ALTO CA 94304

DL-4

DARPA/JITO

ATTN: DR KIRSTIE BELLMAN
3701 N FAIRFAX DRIVE
ARLINGTON VA 22203-1714

NASAZJOHNSON SPACE CENTER
ATTN: CHRIS CULBERT

MAIL CODE PT4

HOUSTON TX 77058

STERLING IMD INC.

KSC OPERATIONS

ATTN: MARXK MAGINN

BEECHES TECHNICAL CAMPUS/RT 26 N.
ROME RY 13440

SCHLUMBERGER LABORATORY FOR
COMPUTER SCIENCE

ATTN: DR. GUILLERMO ARANGO

3311 NORTH FM620

AUSTIN, TX 78720

DECISION SYSTEMS DEPARTMENT

ATTN: PROF WALT SCACCHI

SCHODL OF BUSINESS

UNIVERSITY. OF SOUTHERN CALIFORNIA
LOS ANGELES, CA 90089-1421:

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY

ATTN: CHRIS DABROWSKI

RODM A266, BLDS 225

GAITHSBURG HD 20899

EXPERT SYSTEMS LABORATORY
ATTN: STEVEN H. SCHWARTZ
NYNEX SCIENCE & TECHNOLOGY
300 WESTCHESTER AVENUE
WHITE PLAINS NY 20604

NAVAL TRAINING SYSTEMS CENTER
ATTN: ROBERT BREAUX/CODE 252
12350 RESEARCH PARKWAY.
ORLANDO FL 32826-3224

DR JOHN SALASIN
DARPA/ITO

-3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DL-5

DR BARRY BOEHM

DIR, USC CENTER FOR SW ENGINEERING
COMPUTER SCIENCE DEPT

UNIV OF SOUTHERN CALIFORNIA

L0OS ANGELES CA 90089-0781

DR STEVE CPROSS

CARNEGTE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTSBURGH PA 15213-33891

DR MARK MAYBURY

MITRE CORPORATION

ADVANCED INFO SYS TECH, 6041
BURLINTON ROAD, M/S X-329
BEDFORD MA 01730

IsX

ATTN: MR. SCOTT FOUSE
4353 PARX TERRACE DRIVE
WESTLAKE VILLAGE,CA 91361

MR GARY EDWARDS

I8X

433 PARK TERRACE DRIVE
WESTLAKE VILLAGE CA 91361

LEE ERMAN

CIMFLEX TEKNOWLEDGE
1810 EMBACADERO ROAD
PaDa BOX 10119

PALO ALTO CA 94303

DR« DAVE GUNNING
DARPAZISO

3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DRa MICHAEL PITTARELLI

COMPUTER SCIENCE DEPART

SUNY INST OF TECH AT UTICA/ROME
P.0. BOX 3050

UTICA, NY 13506-3050

CAPRARD TECHNOLOGIES, INC
ATTN: GERARD CAPRARO

311 TURNER ST.

UTICA, NY 13501

bDL-6

USC/ISI

ATTN: BOB MCGREGOR

4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292

SRI INTERNATIONAL
ATTN: ENRIQUE RUSPINI
333 RAVENSWOOD AVE
MENLO PARK, CA 94025

DARTMOUTH COLLESGE

ATTN: DANIELA RUS

DEPT OF COMPUTER SCIENCE
11 ROPE FERRY ROAD
HANOVER, NH D3755-3510

UNIVERSITY OF FLORIDA
ATTN: ERIC HANSON

CISE DEPTY 456 CSE
SGAINESVILLE, FL 32611-6120

CARNEGIE MELLON UNIVERSITY.
ATTN: TOM MITCHELL
COMPUTER SCIENCE DEPARTMENT
PITTSBURGH, PA 15213-389D

UNIVERSITY OF ROCHESTER

ATTN: JAMES ALLEN
DEPARTMENT. OF COMPUTER SCIENCE
ROCHESTER, NY 14427

MNIS-TEXTWISE LABS

ATTN: PARAIE SHERIDAN

DEY CENTENNIAL PLAZA 5TH FLOOR
SYRACUSE, NY 13502

WRIGHT STATE UNIVERSITY'

ATTN: DR. BRUCE BERRA

DEPART OF COMPUTER SCIENCE % ENGIN
DAYTON, OHIO 45435-0001.

UNIVERSITY OF FLORIDA

ATTN: SHARMA CHAKRAVARTHY
COMPUTER & INFOR SCIENCE DEPART
GAINESVILLE, FL 32622-6125

pL-7

KESTREL INSTITUTE
ATTN: DAVID ESPINOSA
3260 HILLVIEW AVENUE
PALO ALTO, CA 94304

USC/INFORMATION SCIENCE INSTITUTE
ATTN: DR. CARL KESSELMAN

11474 ADNIRALTY WAY, SUITE 1001
MARINA DEL REY, CA 90292

MASSACHUSETTS INSTITUTE OF TECH
ATTN: DR. MICHAELE SIEGEL
SLOAN SCHOOL

77 MASSACHUSETTS AVENUE
CAMBRIDGE, MA 02139

USC/INFORMATION SCIENCE INSTITUTE
ATTN: DR. WILLIAM SWARTHOUT
11474 ADMIRALTY WAY, SUITE 1001
MARINA DEL REY, CA 90292

STANFORD UNIVERSITY.

ATTN: DOR. GIO WIEDERHOLD

857 SIERRA STREET

STANFORD

SANTA CLARA COUNTY, CA 94305-4125

SPAWARSYSCEN D44209
ATTN: LEAH WONG

53245 PATTERSON ROAD

SAN DIEGO, CA 92152-7151%

SPAWARSYSCEN D4123
ATTN: LES ANDERSON
53560 HULL STREET

SAN DIEGO CA 92152-5001

GEORGE MASON UNIVERSITY
ATTN: SUSHIL JAJODIA
ISSE DEPT

FAIRFAX, VA 22030-4444

DIRNSA

ATTN: NMICHAEL R. WARE

DOD, NSA/CSS (R23)

FT. GEORGE 6. MEADE MD 20755-6000

DL-8

DR. JIM RICHARDSON
3660 TECHNOLOGY DRIVE
MINNEAPOLIS, MN 55418

LOUISIANA STATE UNIVERSITY
COMPUTER SCIENCE DEPT

ATTN: DR. PETER (HEN

257 COATES HALL

BATON ROUGE, LA 70803

INSTITUTE OF TECH DEPT OF COMP (I
ATTN: DR. JAIDEEP SRIVASTAVA
4-192 EE/CS

200 UNION ST SE

MINNEAPOLIS, MN 55455

GTE/3BN

ATTN: MAURICE M. MONEIL
9655 GRANITE RIDGE DRIVE
SUITE 245

SAN DIEGD, CA 92123

UNIVERSITY OF FLORIDA.

ATTN: DR.. SHARMA CHAXRAVARTHY
E470 CSE BUILDING

GAINESVILLE, FL 32611-8125

AFRLJIFT
525 BROOKS. ROAD
ROME, NY 13441-4505

AFRLZIFTHM
525 BROOKS ROAD
ROME, NY 13441-4505

JEAN SCHOLTZ

DARPA/ITO

3701 NORTH FAIRFAX DRIVE
ARLINGTON' VA 22203-1714

DR. ROGER CHEN

DEPT OF ELECT % COMPUTER ENGINR
SYRACUSE UNIVERSITY!
SYRACUSE, NY 13244-1240

oL~9

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF) -

The advancement and application of information systems science and
technology for aerospace command and control and its transition to air,
space, and ground systems to meet customer needs in the areas of Global
Awareness, Dynamic Planning and Execution, and Global Information
Exchange is the focus of this AFRL organization. The directorate"s areas
of investigation include a broad spectrum of information and fusion,
communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

